Showing posts with label understanding what it's about. Show all posts
Showing posts with label understanding what it's about. Show all posts

Friday, November 09, 2018

On facts, opinions, and being allowed to hold and express what while being taken seriously

A friend of mine recently posted a piece from 2012, and written by Patrick Stokes titled, "No, you're not entitled to your opinion." It was really quite a good one that helps answer the question of why the statement, "you're entitled to your own opinion" is both true and untrue. After reading through it, I was reminded of another essay that could stand as a complement, written in 1989 by Isaac Asimov, titled, "The Relativity of Wrong."

I present them here, since I am not sure if or when they will disappear from the web.

First is "No, you're not entitled to your opinion" by Patrick Stokes (from Big Think)
Every year, I try to do at least two things with my students at least once. First, I make a point of addressing them as “philosophers” – a bit cheesy, but hopefully it encourages active learning.

Secondly, I say something like this: “I’m sure you’ve heard the expression ‘everyone is entitled to their opinion.’ Perhaps you’ve even said it yourself, maybe to head off an argument or bring one to a close. Well, as soon as you walk into this room, it’s no longer true. You are not entitled to your opinion. You are only entitled to what you can argue for.”

A bit harsh? Perhaps, but philosophy teachers owe it to our students to teach them how to construct and defend an argument – and to recognize when a belief has become indefensible.

The problem with “I’m entitled to my opinion” is that, all too often, it’s used to shelter beliefs that should have been abandoned. It becomes shorthand for “I can say or think whatever I like” – and by extension, continuing to argue is somehow disrespectful. And this attitude feeds, I suggest, into the false equivalence between experts and non-experts that is an increasingly pernicious feature of our public discourse.

Firstly, what’s an opinion?

Plato distinguished between opinion or common belief (doxa) and certain knowledge, and that’s still a workable distinction today: unlike “1+1=2” or “there are no square circles,” an opinion has a degree of subjectivity and uncertainty to it. But “opinion” ranges from tastes or preferences, through views about questions that concern most people such as prudence or politics, to views grounded in technical expertise, such as legal or scientific opinions.

You can’t really argue about the first kind of opinion. I’d be silly to insist that you’re wrong to think strawberry ice cream is better than chocolate. The problem is that sometimes we implicitly seem to take opinions of the second and even the third sort to be unarguable in the way questions of taste are. Perhaps that’s one reason (no doubt there are others) why enthusiastic amateurs think they’re entitled to disagree with climate scientists and immunologists and have their views “respected.”

Meryl Dorey is the leader of the Australian Vaccination Network, which despite the name is vehemently anti-vaccine. Ms. Dorey has no medical qualifications, but argues that if Bob Brown is allowed to comment on nuclear power despite not being a scientist, she should be allowed to comment on vaccines. But no-one assumes Dr. Brown is an authority on the physics of nuclear fission; his job is to comment on the policy responses to the science, not the science itself.

So what does it mean to be “entitled” to an opinion?

If “Everyone’s entitled to their opinion” just means no-one has the right to stop people thinking and saying whatever they want, then the statement is true, but fairly trivial. No one can stop you saying that vaccines cause autism, no matter how many times that claim has been disproven.

But if ‘entitled to an opinion’ means ‘entitled to have your views treated as serious candidates for the truth’ then it’s pretty clearly false. And this too is a distinction that tends to get blurred.

On Monday, the ABC’s Mediawatch program took WIN-TV Wollongong to task for running a story on a measles outbreak which included comment from – you guessed it – Meryl Dorey. In a response to a viewer complaint, WIN said that the story was “accurate, fair and balanced and presented the views of the medical practitioners and of the choice groups.” But this implies an equal right to be heard on a matter in which only one of the two parties has the relevant expertise. Again, if this was about policy responses to science, this would be reasonable. But the so-called “debate” here is about the science itself, and the “choice groups” simply don’t have a claim on air time if that’s where the disagreement is supposed to lie.

Mediawatch host Jonathan Holmes was considerably more blunt: “there’s evidence, and there’s bulldust,” and it’s not part of a reporter’s job to give bulldust equal time with serious expertise.

The response from anti-vaccination voices was predictable. On the Mediawatch site, Ms. Dorey accused the ABC of “openly calling for censorship of a scientific debate.” This response confuses not having your views taken seriously with not being allowed to hold or express those views at all – or to borrow a phrase from Andrew Brown, it “confuses losing an argument with losing the right to argue.” Again, two senses of “entitlement” to an opinion are being conflated here.

So next time you hear someone declare they’re entitled to their opinion, ask them why they think that. Chances are, if nothing else, you’ll end up having a more enjoyable conversation that way.

Next is "The Relativity of Wrong" by Isaac Asimov (published in Skeptical Inquirer, posted at a personal website at Tufts)
I RECEIVED a letter the other day. It was handwritten in crabbed penmanship so that it was very difficult to read. Nevertheless, I tried to make it out just in case it might prove to be important. In the first sentence, the writer told me he was majoring in English literature, but felt he needed to teach me science. (I sighed a bit, for I knew very few English Lit majors who are equipped to teach me science, but I am very aware of the vast state of my ignorance and I am prepared to learn as much as I can from anyone, so I read on.)

It seemed that in one of my innumerable essays, I had expressed a certain gladness at living in a century in which we finally got the basis of the universe straight.

I didn't go into detail in the matter, but what I meant was that we now know the basic rules governing the universe, together with the gravitational interrelationships of its gross components, as shown in the theory of relativity worked out between 1905 and 1916. We also know the basic rules governing the subatomic particles and their interrelationships, since these are very neatly described by the quantum theory worked out between 1900 and 1930. What's more, we have found that the galaxies and clusters of galaxies are the basic units of the physical universe, as discovered between 1920 and 1930.

These are all twentieth-century discoveries, you see.

The young specialist in English Lit, having quoted me, went on to lecture me severely on the fact that in every century people have thought they understood the universe at last, and in every century they were proved to be wrong. It follows that the one thing we can say about our modern "knowledge" is that it is wrong. The young man then quoted with approval what Socrates had said on learning that the Delphic oracle had proclaimed him the wisest man in Greece. "If I am the wisest man," said Socrates, "it is because I alone know that I know nothing." the implication was that I was very foolish because I was under the impression I knew a great deal.

My answer to him was, "John, when people thought the earth was flat, they were wrong. When people thought the earth was spherical, they were wrong. But if you think that thinking the earth is spherical is just as wrong as thinking the earth is flat, then your view is wronger than both of them put together."

The basic trouble, you see, is that people think that "right" and "wrong" are absolute; that everything that isn't perfectly and completely right is totally and equally wrong.
However, I don't think that's so. It seems to me that right and wrong are fuzzy concepts, and I will devote this essay to an explanation of why I think so.

When my friend the English literature expert tells me that in every century scientists think they have worked out the universe and are always wrong, what I want to know is how wrong are they? Are they always wrong to the same degree? Let's take an example.
In the early days of civilization, the general feeling was that the earth was flat. This was not because people were stupid, or because they were intent on believing silly things. They felt it was flat on the basis of sound evidence. It was not just a matter of "That's how it looks," because the earth does not look flat. It looks chaotically bumpy, with hills, valleys, ravines, cliffs, and so on.

Of course there are plains where, over limited areas, the earth's surface does look fairly flat. One of those plains is in the Tigris-Euphrates area, where the first historical civilization (one with writing) developed, that of the Sumerians.

Perhaps it was the appearance of the plain that persuaded the clever Sumerians to accept the generalization that the earth was flat; that if you somehow evened out all the elevations and depressions, you would be left with flatness. Contributing to the notion may have been the fact that stretches of water (ponds and lakes) looked pretty flat on quiet days.

Another way of looking at it is to ask what is the "curvature" of the earth's surface Over a considerable length, how much does the surface deviate (on the average) from perfect flatness. The flat-earth theory would make it seem that the surface doesn't deviate from flatness at all, that its curvature is 0 to the mile.
Nowadays, of course, we are taught that the flat-earth theory is wrong; that it is all wrong, terribly wrong, absolutely. But it isn't. The curvature of the earth is nearly 0 per mile, so that although the flat-earth theory is wrong, it happens to be nearly right. That's why the theory lasted so long.

There were reasons, to be sure, to find the flat-earth theory unsatisfactory and, about 350 B.C., the Greek philosopher Aristotle summarized them. First, certain stars disappeared beyond the Southern Hemisphere as one traveled north, and beyond the Northern Hemisphere as one traveled south. Second, the earth's shadow on the moon during a lunar eclipse was always the arc of a circle. Third, here on the earth itself, ships disappeared beyond the horizon hull-first in whatever direction they were traveling.
All three observations could not be reasonably explained if the earth's surface were flat, but could be explained by assuming the earth to be a sphere.

What's more, Aristotle believed that all solid matter tended to move toward a common center, and if solid matter did this, it would end up as a sphere. A given volume of matter is, on the average, closer to a common center if it is a sphere than if it is any other shape whatever.

About a century after Aristotle, the Greek philosopher Eratosthenes noted that the sun cast a shadow of different lengths at different latitudes (all the shadows would be the same length if the earth's surface were flat). From the difference in shadow length, he calculated the size of the earthly sphere and it turned out to be 25,000 miles in circumference.

The curvature of such a sphere is about 0.000126 per mile, a quantity very close to 0 per mile, as you can see, and one not easily measured by the techniques at the disposal of the ancients. The tiny difference between 0 and 0.000126 accounts for the fact that it took so long to pass from the flat earth to the spherical earth.

Mind you, even a tiny difference, such as that between 0 and 0.000126, can be extremely important. That difference mounts up. The earth cannot be mapped over large areas with any accuracy at all if the difference isn't taken into account and if the earth isn't considered a sphere rather than a flat surface. Long ocean voyages can't be undertaken with any reasonable way of locating one's own position in the ocean unless the earth is considered spherical rather than flat.

Furthermore, the flat earth presupposes the possibility of an infinite earth, or of the existence of an "end" to the surface. The spherical earth, however, postulates an earth that is both endless and yet finite, and it is the latter postulate that is consistent with all later findings.

So, although the flat-earth theory is only slightly wrong and is a credit to its inventors, all things considered, it is wrong enough to be discarded in favor of the spherical-earth theory.

And yet is the earth a sphere?

No, it is not a sphere; not in the strict mathematical sense. A sphere has certain mathematical properties - for instance, all diameters (that is, all straight lines that pass from one point on its surface, through the center, to another point on its surface) have the same length.

That, however, is not true of the earth. Various diameters of the earth differ in length.
What gave people the notion the earth wasn't a true sphere? To begin with, the sun and the moon have outlines that are perfect circles within the limits of measurement in the early days of the telescope. This is consistent with the supposition that the sun and the moon are perfectly spherical in shape.

However, when Jupiter and Saturn were observed by the first telescopic observers, it became quickly apparent that the outlines of those planets were not circles, but distinct ellipses. That meant that Jupiter and Saturn were not true spheres.

Isaac Newton, toward the end of the seventeenth century, showed that a massive body would form a sphere under the pull of gravitational forces (exactly as Aristotle had argued), but only if it were not rotating. If it were rotating, a centrifugal effect would be set up that would lift the body's substance against gravity, and this effect would be greater the closer to the equator you progressed. The effect would also be greater the more rapidly a spherical object rotated, and Jupiter and Saturn rotated very rapidly indeed.

The earth rotated much more slowly than Jupiter or Saturn so the effect should be smaller, but it should still be there. Actual measurements of the curvature of the earth were carried out in the eighteenth century and Newton was proved correct.

The earth has an equatorial bulge, in other words. It is flattened at the poles. It is an "oblate spheroid" rather than a sphere. This means that the various diameters of the earth differ in length. The longest diameters are any of those that stretch from one point on the equator to an opposite point on the equator. This "equatorial diameter" is 12,755 kilometers (7,927 miles). The shortest diameter is from the North Pole to the South Pole and this "polar diameter" is 12,711 kilometers (7,900 miles).

The difference between the longest and shortest diameters is 44 kilometers (27 miles), and that means that the "oblateness" of the earth (its departure from true sphericity) is 44/12755, or 0.0034. This amounts to l/3 of 1 percent.

To put it another way, on a flat surface, curvature is 0 per mile everywhere. On the earth's spherical surface, curvature is 0.000126 per mile everywhere (or 8 inches per mile). On the earth's oblate spheroidal surface, the curvature varies from 7.973 inches to the mile to 8.027 inches to the mile.

The correction in going from spherical to oblate spheroidal is much smaller than going from flat to spherical. Therefore, although the notion of the earth as a sphere is wrong, strictly speaking, it is not as wrong as the notion of the earth as flat.

Even the oblate-spheroidal notion of the earth is wrong, strictly speaking. In 1958, when the satellite Vanguard I was put into orbit about the earth, it was able to measure the local gravitational pull of the earth--and therefore its shape--with unprecedented precision. It turned out that the equatorial bulge south of the equator was slightly bulgier than the bulge north of the equator, and that the South Pole sea level was slightly nearer the center of the earth than the North Pole sea level was.

There seemed no other way of describing this than by saying the earth was pear-shaped, and at once many people decided that the earth was nothing like a sphere but was shaped like a Bartlett pear dangling in space. Actually, the pear-like deviation from oblate-spheroid perfect was a matter of yards rather than miles, and the adjustment of curvature was in the millionths of an inch per mile.

In short, my English Lit friend, living in a mental world of absolute rights and wrongs, may be imagining that because all theories are wrong, the earth may be thought spherical now, but cubical next century, and a hollow icosahedron the next, and a doughnut shape the one after.

What actually happens is that once scientists get hold of a good concept they gradually refine and extend it with greater and greater subtlety as their instruments of measurement improve. Theories are not so much wrong as incomplete.

This can be pointed out in many cases other than just the shape of the earth. Even when a new theory seems to represent a revolution, it usually arises out of small refinements. If something more than a small refinement were needed, then the old theory would never have endured.

Copernicus switched from an earth-centered planetary system to a sun-centered one. In doing so, he switched from something that was obvious to something that was apparently ridiculous. However, it was a matter of finding better ways of calculating the motion of the planets in the sky, and eventually the geocentric theory was just left behind. It was precisely because the old theory gave results that were fairly good by the measurement standards of the time that kept it in being so long.

Again, it is because the geological formations of the earth change so slowly and the living things upon it evolve so slowly that it seemed reasonable at first to suppose that there was no change and that the earth and life always existed as they do today. If that were so, it would make no difference whether the earth and life were billions of years old or thousands. Thousands were easier to grasp.

But when careful observation showed that the earth and life were changing at a rate that was very tiny but not zero, then it became clear that the earth and life had to be very old. Modern geology came into being, and so did the notion of biological evolution.

If the rate of change were more rapid, geology and evolution would have reached their modern state in ancient times. It is only because the difference between the rate of change in a static universe and the rate of change in an evolutionary one is that between zero and very nearly zero that the creationists can continue propagating their folly.
Since the refinements in theory grow smaller and smaller, even quite ancient theories must have been sufficiently right to allow advances to be made; advances that were not wiped out by subsequent refinements.

The Greeks introduced the notion of latitude and longitude, for instance, and made reasonable maps of the Mediterranean basin even without taking sphericity into account, and we still use latitude and longitude today.

The Sumerians were probably the first to establish the principle that planetary movements in the sky exhibit regularity and can be predicted, and they proceeded to work out ways of doing so even though they assumed the earth to be the center of the universe. Their measurements have been enormously refined but the principle remains.
Naturally, the theories we now have might be considered wrong in the simplistic sense of my English Lit correspondent, but in a much truer and subtler sense, they need only be considered incomplete.

Friday, April 13, 2018

Yes, this actually is sexist. But is that necessarily a problem?

In the facebook comments section (yes, yes, I know) of an NPR article about the gender disparity of OB/GYNs, I read the following comment:
I have never seen a male OB GYN. I have always sought female doctors. It used to be difficult to find female providers. All of my OBs have also been mothers. I refuse to take advice regarding something as life altering as birth from someone who has no experience of their own.

As one can well imagine, there were MANY comments following that statement, and they generally fell into three different categories:

1. The most numerous were mostly from men who were making points like:

I will never take advice from a cardiologist that hasn't had a heart attack.


2. The next were almost all from women, who were making points like:
I don't have kids, but I would want someone who knows what it feels like to be pregnant and give birth. That's a perspective a male can never give, so if the woman prefers that her doctor DOES have that perspective, what's the big deal?

3. The final set (and the least numerous) were mostly from women (although there were some fathers mixed in there), who were making points like:
I have had my pain blown off by female doctors that couldn't believe my cramps were so bad. My favorite OBGYN was male. He was by far the most understanding and empathetic gyno I've seen.


But I was arrested by the following comment.

I agree with with original commenter. Ive always had female obgyns and midwives. Not all have had children of their own. It's not sexist to prefer to be seen by women. On a very basic, primal level, I did not want men around me when I gave birth. I wanted a woman each time.

Specifically, the point that stopped me was the simply stated sentence, "It's not sexist to prefer to be seen by women."

Hold on. Whut?

Change the gender or substitute race, and the bigotry of the statement becomes clear.

"It's not sexist to prefer to be seen by men."

Yeah, that's a sexist statement. If the whole basis for choosing a doctor boils down to whether the individual has a penis and testicles (or even possibly simply displays or identifies as male), then that's a sexist reason for choosing a doctor.

"It's not racist to prefer to be seen by whites."

Yeah, that's a racist statement. If the whole basis for choosing a doctor boils down to the melanin content of the individual, then - given how skin melanin content defines race in the US context (at least in terms of white vs. not-white), then that's a racist reason for choosing a doctor.

Similarly, it is definitely classist to say, "It's not classist to prefer to be seen by a doctor from a good family," and it is definitely ethnically insensitive to say, "It's not discriminatory to prefer to be seen by a Chinese doctor." So why would someone think and state unequivocally that, "It's not sexist to prefer to be seen by women"? I'm guessing because they are thinking two things:

1. "I'm not a bigot," and
2. "I feel comfortable with female doctors."

There could also be a bit of conflation between individual and societal sexism going on, but the presence of societal sexism (i.e., women being far less capable of exerting or having a societal effect that privileges women over men) doesn't mean that individual sexism (i.e., evaluating a particular individual's competence based solely or heavily on their sex) doesn't exist. This is definitely true in the case of racism, where societal racism (i.e., the greater levels of privilege held by whites vs. other races of similar backgrounds) doesn't negate the presence of individual racism (e.g., a black woman refusing to date an Asian man, because [insert racial stereotype of Asian men here]).

Okay, but is it wrong to have an individual preference?
 
I'd argue that it isn't necessarily wrong, per se. It's okay and perfectly natural to have preferences.
 
In the case above, it's perfectly okay and understandable to want to feel comfortable with any doctor you have, regardless of specialization.
 
What is wrong (at least to my perspective) is to have blinders on about the reasons for those preferences, especially if one's argument is based on taking the moral high ground (which the responding comment seems to try an do). In other words, to deny that one's comfort comes from inherent bias (based on sex, parental status, gender, socioeconomic background, race, or something else) is ultimately being dishonest. And if one is committing such denial in order to make a moral point about how one's choice that is inherently bigoted at the individual level isn't actually a bigoted choice, then that person's argument really should lose all merit.

In response to the comment, it is - definitionally - sexist to prefer a doctor based on the genitals they have (and the assumed life experiences they have accumulated based on what genitals they have). But if that's the factor that makes you comfortable when having someone take care of you, then you better be comfortable with that, instead of denying it up and down. What can help is to accept that the decision is made because of the sex of the individual (and the assumed life experiences based on that sex), and then to determine whether such criteria actually are merited, based on one's larger world views. Therefore, if one actually is and has no issues being a sexist, then such self-examination will mean that there is no problem; no inherent discordancy between intent and action. If, conversely, one believes themselves not to be a sexist, then such self-examination will (hopefully) mean that they will encounter a discordancy between their actions and their intentions, and that can lead to reviewing their choices.

But to deny that choices based on sex aren't sexist, because [insert rationalization here]? That just sets up a system of denialism that serves no one, including the person making the rationalizations.

And - at least to me - that speaks to larger societal contexts (and costs) of admitting that personal actions may be even the smallest bit bigoted. That cost is really high, which makes public admission of such motivations really difficult to do, which promotes denialism as well as promoting a sense of tribalistic protectionism. All of which makes any sense of progress even less likely.

Ah, well. I've said my two bits.

Thursday, September 07, 2017

Hurricane Irma, warm oceans, and expanding the Saffir-Simpson Hurricane Scale

Back in 2011, I wrote about the current five-category hurricane system that the US uses (known as the Saffir-Simpson Hurricane Scale), noting that the foundational logic of the scale was based on structural engineering questions:
a former NOAA hurricane center administrator and co-inventor of the SSHS that, "there is no reason for a Category 6 on the Saffir-Simpson Scale because it is designed to measure the potential damage of a hurricane to manmade structures. If the wind speed of the hurricane is above 155 mph (249 km/h), then the damage to a building will be 'serious no matter how well it's engineered'."
The current scale tops out at a "Category 5," which is any sustained wind speed above 155 mph. However, if one uses the threshold values for Categories 1 through 5 to develop a regression equation, it is possible to extend this relationship ever outward. Specifically, a revised category scale would be something like this:
Category 1: <95mph
Category 2: 96-110mph
Category 3: 111-130mph
Category 4: 131-150mph
Category 5: 151-175mph
Category 6: 176-205mph
Category 7: 206-235mph
Back in 2011, Hurricane Camille had sustained wind speeds of 175 mph, which is what prompted me to write that post. Currently, Hurricane Irma is reported as having sustained wind speeds of 185 mph, making it the strongest Atlantic hurricane in recorded history. However, based on the current hurricane scale, both Camille and Irma are classified as Category 5, even though Irma is obviously far stronger than Camille (which was - itself - a massive hurricane).

Indeed, the current system is fundamentally limited and fundamentally limiting, since one loses any sense of comparative scale once you enter "Category 5." And what would it hurt to look at adding a "Category 6," especially if warming waters are known to lead to stronger and more sustained hurricanes? Indeed, with warming oceans, hurricanes that will reach sustained wind speeds between 175 and 205 mph will not be theoretical. Indeed, Hurricane Irma is proof-positive that such hurricanes can and will form.

But so what? Why would that matter?

Well, in the US, the SSHS is a widely known and used shorthand for hurricane strength. It's something that people latch on to when discussing preparedness measures and when making comparisons against past events. But if the maximum scale is effectively open-ended, the designation "Category 5" will be shared by a hurricane with wind speeds of 155 mph and another with winds speeds of 185 mph (like Hurricane Irma). And the simple fact is that wind speeds of 185 mph are fundamentally different than wind speeds of 155 mph, and placing both in the same open-ended category will not help with making short-hand comparisons that would be equivalent to comparing a Category 4 hurricane against a Category 3 hurricane.

The way we categorize natural phenomena is important, since it structures the way that we view and respond to the world, and if we continue to use a hurricane classification system whose comparative utility declines into a future that is expected to have stronger hurricanes, that can impact the type of public response given to future storms.

Monday, May 22, 2017

Some things to consider when thinking about political trends

I don't write so much these days on this blog, but that doesn't mean that I've stopped thinking about some of the themes that I have written about in the past. Today, I want to write a little about US national politics and trends. Specifically, I want to write a little about the US Presidential elections, and what it means for Democrats.

This urge was spurred on by an article I read at Vox ("What right-wing populism?"). Okay, the author makes some shortcuts by basically equating liberals with progressives and those with Democrats, but given the dominant duality of the US political system, that short-hand has become so commonplace that it is effectively taken as synonymous in many corners. However, he makes some good data-backed rhetorical points about the public wanting government spending even as they might say that they don't want government spending.

But this got me thinking about the "Trump Revolution" (of 2016) and the earlier "Reagan Revolution" (that happened in 1980). In both cases, the narrative was that working class/blue-collar voters moved from the Democrats to the Republicans. But in 2016, that story never rang true for me. After all, Hillary won the popular vote (and - indeed - the polls predicted the popular win quite accurately). And the increase in Republican votes between 2012 and 2016 was basically a rise of 2 million, but less than 1 million when Bush ran to his first popular vote victory in 2004. But - because the US population was lower in 2004 than 2016, this "less than 1 million than Bush in 2004" figure means that Bush actually won a greater percentage of the vote (29.06% of all voting-age Americans) than Trump (26.74% of all voting-age Americans). But let me unpack that a little bit, because those numbers seem too small.

What I wanted to do was to create an assessment of how many voting-age Americans did each party's candidate win in each POTUS election? Now, in every year, not all people vote (indeed, the average voter turnout for a POTUS election since 1940 is 56.3%). Therefore, if there is a year where the voter turnout is only 50% (like 1988), then a victory of 53.4% (which George H.W. Bush got) means that only 27.6% of voting-age Americans actually cast a vote for Papa Bush. Indeed, counted this way, most POTUS victories since 1940 were won with less than 1/3 of all voting-age Americans actually casting a ballot for the victor, save for four Presidents: FDR (1940, 34.4%), Ike (1952, 35.1%; 1956 35.0%), JFK (1964, 37.97%), and Tricky Dick (1972, 34.11%).

Okay, so what, though?

Well, if there was a major shift from Democrats to Republicans in 1980 with Reagan and 2016 with Trump, then there should have been a major shift in the share of voting-age Americans that the Republicans won in those years, and a consonant decline in Democrats compared to each previous election. With Reagan, we do see this:

Republicans: 26.24% (1976)     27.14% (1980)     +0.9%
Democrats: 27.36% (1976)     21.93% (1980)     -5.43%

But with Trump? Not so much:

Republicans: 26.37% (2012)     26.74% (2016)     +0.37%
Democrats: 28.53% (2012)     27.96% (2016)     -0.57%

So what's going on? Basically, the Republicans did gain more votes since the previous election, but 2016 was nothing like 1980. The change in Democratic vote-share in 2016 was nowhere near the enormous shift seen in 1980 moving away from Carter. And we see this in shifts in the popular vote from 2012:

Republicans: +2,050,000 votes compared to 2012
Democrats: -60,000 votes compared to 2012.

But, given the simple fact that Trump's share of voting-age Americans (26.74%) is basically the same as the average GOP vote-share since 2000 (26.78%) means that the power of Trump/Pence in the elections was not really any different from Bush/Cheney, McCain/Palin, or Romney/Ryan.

The only real difference is on the Democrats' side.

So 2016 isn't so much a story of conservative or right-wing America surging, but rather a story of liberal or left-wing American choosing to stay home. This, together with the Vox article, strongly suggest that - if liberal/progressive/Democratic Americans actually got out to vote - then there would be a dramatic across-the-board shift. Luckily for conservatives, the percentage of liberals/progressives who go and vote is lower than the percentage of voting conservatives.

(Note: All numbers are drawn from a simple set of calculations using voting statistics drawn from Wikipedia pages on presidential elections between 1940 and 2016.)

Saturday, November 12, 2016

What was the purpose of the electoral college? One idea.

I've been seeing many comments about the purpose behind the electoral college. These include "The point of the electoral college is to ensure the entire country has a voice not just highly populated area," and, "The purpose of the electoral collage is to ensure that we don't elect dictators," and others. It seems to be a bit of a puzzle, since there is not any reason cited by the electoral college creators as to why that system was to be implemented.

While I don't know that any of these are the point of the electoral college, it is easy to think it might be, an outcome of it. However, I think part of the answer lies in how the electoral college apportions the number of electors: one elector for each legislator (with modifications due to the cap on the total number of Representatives). It's with this latter cap on the total number of Representatives (and thus on the number of electors) that the electoral college sets up an additional relative preference for small population states over large population states. And it's based on this rationale that it makes sense that the electoral college could have been set up to ensure that less-populated areas have their voice heard.
But there's one other, historical, point:

A direct vote would have been opposed by Southern states, because slaves couldn't vote. However, creating a separate body of electors, whose numbers would be equivalent to the size of the state's Congressional delegation would be bolstered by the 3/5th compromise. Why? Let's work backwards from how the apportionment of electors is decided. Article II, Section 1 of the Constitution provides no rationale for the creation of an electoral college, but does explain how to apportion the number of electors:
Each State shall appoint, in such Manner as the Legislature thereof may direct, a Number of Electors, equal to the whole Number of Senators and Representatives to which the State may be entitled in the Congress.
We know that the number of senators is defined at two senators per state (Article I, Section 3), regardless of population. And we know that the number of Representatives is defined based on the number of people in the state (and potentially limited, based on an overall cap of Representatives at 435). However, things were originally a bit different, as explained in Article I, Section 2:
Representatives and direct Taxes shall be apportioned among the several States which may be included within this Union, according to their respective Numbers, which shall be determined by adding to the whole Number of free Persons, including those bound to Service for a Term of Years, and excluding Indians not taxed, three fifths of all other Persons.
Now, this determination of "all other Persons" is a nice way of saying "slaves," since indentured servants were still considered to be free for purposes of counting the population. This means that the size of the House of Representatives delegation is determined by this basic formula:

# Representatives = # free persons - # untaxed Indians + (3/5 x #slaves)

And the number of electors is determined by the following basic formula:

# Electors = 2 Senators + #Representatives
Or - through substitution:

# Electors = 2 Senators + # free persons - #untaxed Indians + (3/5 x #slaves)

And - like many things in the history of a nation -the system continued through to this day, since it wasn't deemed to be explicitly connected to slavery, nor was it seen to be in need of repair, and it could easily be rationalized to fit a variety of purposes (as seen in the two posted above). However, when one encounters a variety of explanations about the origins or purposes of a thing (such as the purpose behind the 2nd Amendment), such explanations are more than likely to amount to just-so stories, and so a little bit of additional digging ought to happen, especially when the variety of popular explanations either make no sense in combination, conflict with each other, or are in conflict with other parts of the system. Therefore, it appears (at least to me) that the electoral college was set up to ensure that the states with lower populations of freemen would maintain a greater level of control in the early republic.

Note, though, that this is my own hypothesis. I'm not an historian, and I don't have any proof, but we do know that the 3/5th compromise was introduced to ensure that the South had a "sufficient" number in their Congressional delegation. And the electoral college is apportioned, based heavily on the size of the Congressional delegation.

This doesn't mean to say that the electoral college is "pro-slavery" or "racist" or anything like that. It is, though, a relic of a past time in our nation's history, when the calculus of federal representation rested on counting each slave as 3/5 of a person.

Tuesday, October 18, 2016

Linguistic differences and organizing plurals with the word "type"

I was proofreading a paper written in English by a native Spanish speaker, and came across the following phrase:

... that include this type of tools ...

And that really had me scratching my head for a couple reasons. First off, the writing of this particular author was generally quite good, and often what he wrote is exactly what he meant. Second, he had just described the evaluation tool to be one example of several that are used in the discipline, so it is obvious that he is writing about the particular tool of the study in the context of various others that exist.

This had me scratching my head for a bit, with me thinking about the phrase that definitely worked:

... that include this group of tools ...

After all, it's clear that the word "group" means a plurality of the things that constitute it. Yes, one can have a philosophical argument as to whether it is possible to be a "group of one" (even mathematics equivocates on this), if you need to make a philosophical argument about the case, then it implies that the case is so unobvious that - at best - it serves as an special-case exception to the general rule or pattern. So, given this recognition, a "group of tools" automatically means that there are at least two tools that define the group in question, and in that way, it operates as a collective noun in much the same way as "family" and "team" do.

But what about "type"? Is "type" a collective noun in the same way that "group" is? It didn't seem so to my ear, but that could just have been due to the conditioning of my upbringing. Indeed, the first definition given online is:
a number of things or persons sharing a particular characteristic, or set of characteristics, that causes them to be regarded as a group, more or less precisely defined or designated; class; category:
But the example provided is, "a criminal of the most viscious type," which applies the definite article to the word, indicating singularity, and not plurality. So maybe it could be technically correct to write "type of tools," but it still seemed not-normal. So I went to my constant back-up position of objective assessment of language usage: Google n-grams. For both the various permutations of pluarlity of the original phrase, "type of tools," and the more general phrase, "type of things," I had the same result, namely that "type of tool" (and "type of thing" - red line) was far-and-away more prevalent than "type of tools" (or "type of things" - blue line). Even "types of tools" ("types of things" - green line) was more prevalent.



Is the pattern different in Spanish? I tried the same permutations, but in Spanish, and found that "type of things" (tipo de cosas - red line) was WAY more prevalent than any other permutation, with insufficient numbers of exemplars of "types of thing" (tipos de cosa).



So, yeah, it seems that the inherent logic of what is and isn't a collective noun between English and Spanish is different, and this particular writer was likely working from his instincts of whether "type" worked as a collective noun in the same way as in does in Spanish. The simple fact that it doesn't is also likely a lesson that was never covered in his English language lessons, or likely wasn't reinforced. Regardless, what started as a bit of a mental puzzle was resolved in one of the more neatly packaged means that I have encountered.