Friday, September 19, 2008

Scientists create the world's thinnest balloon.

From PhysOrg:

( -- Using a lump of graphite, a piece of Scotch tape and a silicon wafer, Cornell researchers have created a balloonlike membrane that is just one atom thick -- but strong enough to contain gases under several atmospheres of pressure without popping.

The research, by former Cornell graduate student Scott Bunch (now an assistant professor at the University of Colorado), Cornell professor of physics Paul McEuen and Cornell colleagues, could lead to a variety of new technologies -- from novel ways to image biological materials in solution to techniques for studying the movement of atoms or ions through microscopic holes.

The work was conducted at the National Science Foundation-supported Cornell Center for Materials Research and published in a recent issue of the journal Nano Letters.

To test the material's elasticity, the Cornell team deposited graphene on a wafer etched with holes, trapping gas inside graphene-sealed microchambers. They then created a pressure differential between the gas inside and outside the microchamber. With a tapping atomic force microscope, which measures the amount of deflecting force a tiny cantilever experiences as it scans nanometers over the membrane's surface, the researchers watched the graphene as it bulged in or out in response to pressure changes up to several atmospheres without breaking.

They also turned the membrane into a tiny drum, measuring its oscillation frequency at different pressures. They found that helium, the second-smallest element (and the smallest testable gas, since hydrogen atoms pair up as a gas), stays trapped behind a wall of graphene -- again, even under several atmospheres of pressure.

"When you work the numbers, you would expect that nothing would go through, so it's not a scientific surprise," said McEuen. "But it does tell you that the membrane is perfect" -- since even an atom-sized hole would allow the helium to escape easily.

Such a membrane could have all kinds of uses, he added. It could form a barrier in an aquarium-like setup, for example, allowing scientists to image biological materials in solution through a nearly invisible wall without subjecting the microscope to the wet environment. Or, researchers could poke atomic-sized holes in the membrane and use the system to study how single atoms or ions pass through the opening.


They haven't said anything about whether this application could be used in making the future condom. However, if it is impermeable to "nimble Helium atoms", then it must be impermeable to "hulking, lumbering sperm." Similarly, if it is capable of "containing gases under several atmospheres", then it should be capable of handling male ejaculate, I would expect. Since the membrane is only one atom thick, it shouldn't impede sensation, either. However, it leads to a few questions.
  1. How would a man know if he was actually wearing it, since it would not be able to be seen,
  2. How would a man be able to put it on without cutting himself,
  3. Would a man want to put on a nanomaterial condom, and
  4. Would a woman want to have a nanomaterial condom in her?  

1 comment:

Fran├žois said...

You neglect shearing forces.It would have to be frictionless sex.